Tracking of Crowded Similar-Appearance Targets from Low-Continuity Image Sequences

Hongkai Yu¹*, Youjie Zhou¹*, Jeff Simmons², Craig Przybyla², Yuewei Lin¹, Xiaochuan Fan¹, Yang Mi¹ and Song Wang¹

* indicates equal contribution
Problem

Track a large number of similar-appearance targets through a **low-continuity** image sequence.
Fiber Tracking as An Example

Track about 500 fibers with similar appearance

Low continuity: Large inter-slice distance for fast imaging and micro-structure characterization

High continuity \[\rightarrow 1 \mu m \]

Low continuity \[\rightarrow 20 \mu m \]
Approach – Kalman Filter Framework

Recursive steps: Prediction and Correction
Main Challenge: Association

Black boxes: predictions

Red circles: detections
Our Association Method

Group-wise modeling of the association

- Key idea: mapping with homeomorphism

Homeomorphism is modeled by Thin-Plate Splines (TPS) bending energy
Experimental Results

MOTA: Multiple Object Tracking Accuracy

![Graphs showing MOTA (%) vs. inter-slice distance (µm) for different methods including Kalman-NN, Kalman-Hung, Kalman-Global, and Our method compared to DPNMS, SMOT, CEM, KTH, and Our method.](image)
Crowded Human Tracking
Poster Session 1-2: No. 21

Dataset and code: http://cvl.cse.sc.edu/project/cvpr2016.html

Thank you